Frederik Hvilshøj May 5, 2021

Data-Intensive Systems Group, Aarhus University

Today (45 minutes):

1. Comparing Generative Models

2. Metrics

3. Fast Fréchet Inception Distance

4. What is it Good For? 🎜

Comparing Generative Models

Which one is better?

"Real"

$x_1, \ldots, x_n \sim P_{\text{real}}$

Which one is better?

"Real"
 "Fake 1"

$$x_1, \ldots, x_n \sim P_{real}$$
 $x_1^{(1)}, \ldots, x_m^{(1)} \sim P_{G_1}$

 Image: Constraint of the second s

Which one is better?

"Real"
 "Fake 1"
 "Fake 2"

$$x_1, \ldots, x_n \sim P_{real}$$
 $x_1^{(1)}, \ldots, x_m^{(1)} \sim P_{G_1}$
 $x_1^{(2)}, \ldots, x_\ell^{(2)} \sim P_{G_2}$

 Image: Image:

1. Fast

- 1. Fast
- 2. Diversity

- 1. Fast
- 2. Diversity
- 3. Classifiable

- 1. Fast
- 2. Diversity
- 3. Classifiable
- 4. Translation invariant

Metrics

First Idea: Inception Score¹

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. and Chen, X., 2016. Improved techniques for training gans. arXiv preprint arXiv:1606.03498.

Idea: Use Inception network N(x) = p(y|x) to "analyze" the generated data.

Idea: Use Inception network N(x) = p(y|x) to "analyze" the generated data.

Easily classifiable If N is confident in predictions \Rightarrow better sample quality.

Idea: Use Inception network N(x) = p(y|x) to "analyze" the generated data.

Easily classifiable If N is confident in predictions ⇒ better sample quality.
 Diversity If all the classes are represented, the samples are

diverse.

Easily classifiable If N is confident in predictions ⇒ better sample quality. Diversity If all the classes are represented, the samples are diverse.

(1) (2)

Easily classifiable If N is confident in predictions ⇒ better sample quality. Diversity If all the classes are represented, the samples are diverse.

$$IS(X) = \exp\{ \mathbb{E}_{x} [KL(p(y | x) || p(y))] \}$$
(1)
(2)

Easily classifiable If N is confident in predictions ⇒ better sample quality. Diversity If all the classes are represented, the samples are diverse.

$$IS(X) = \exp \{ \mathbb{E}_{X} [\operatorname{KL} (p(y \mid X) \parallel p(y))] \}$$
(1)
$$= \exp \{ \operatorname{H}(y) - \mathbb{E}_{X} [\operatorname{H}(y|X)] \}$$
(2)

Easily classifiable If N is confident in predictions ⇒ better sample quality. Diversity If all the classes are represented, the samples are diverse.

$$IS(X) = \exp \{ \mathbb{E}_{X} [\operatorname{KL} (p(y \mid X) \parallel p(y))] \}$$
(1)
$$= \exp \{ \operatorname{H}(y) - \mathbb{E}_{X} [\operatorname{H}(y|X)] \}$$
(2)

$$IS(X) = \exp\{ H(y) - \mathbb{E}_{X}[H(y|X)] \}$$

$$IS(X) = \exp\{ H(y) - \mathbb{E}_{X}[H(y|X)] \}$$

Inception Score

$$IS(X) = \exp\{\underbrace{H(y)}_{\text{Maximize}} - \underbrace{\mathbb{E}_{x}[H(y|x)]}_{\text{Minimize}}\}$$
(2)

Correlates with human judgement but doesn't take *P*_{real} into account!

Second Idea: Fréchet Inception Distance²

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S., 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500.

Idea: Compare Inception network encodings between *P*_{real} and *P*_{fake}.

Given means μ_r , μ_f and covariances Σ_r , Σ_f of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$
(3)

(4)

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$
(3)
$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + -2$$
(4)

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$
(3)
$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r]}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_f]}_{\mathcal{O}(d)} - 2$$
(4)

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$
(3)
$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r]}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_f]}_{\mathcal{O}(d)} - 2\operatorname{Tr}[\underbrace{\sqrt{\Sigma_r \Sigma_f}}_{\mathcal{O}(d^3)}]$$
(4)

Given means μ_r , μ_f and covariances Σ_r , Σ_f of Inception encodings, the Fréchet Inception Distance (FID) is defined as

$$\operatorname{FID}(X_r, X_f) = W_2^2 \left(\mathcal{N}\{\mu_r, \Sigma_r\}, \mathcal{N}\{\mu_f, \Sigma_f\} \right)$$
(3)
$$= \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r]}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_f]}_{\mathcal{O}(d)} - 2\operatorname{Tr}[\underbrace{\sqrt{\Sigma_r \Sigma_f}}_{\mathcal{O}(d^3)}]$$
(4)

Today this is state-of-the-art.

Input : Σ_r , Σ_f Output: $\operatorname{Tr}[C] = \operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right]$

Input : Σ_r , Σ_f Output: $\operatorname{Tr}[C] = \operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right]$ 1 $Q, V \leftarrow SchurDecompose(A)$;

 $/* QVQ^T = A */$

Input : Σ_r , Σ_f Output: $\operatorname{Tr}[C] = \operatorname{Tr} \left[\sqrt{\Sigma_r \Sigma_f} \right]$ 1 $Q, V \leftarrow SchurDecompose(A);$ 2 $U \leftarrow TriangSqrt(V);$

/* $QVQ^{T} = A */$ /* $V = U^{2} */$

Input : Σ_r , Σ_f Output: $\operatorname{Tr}[C] = \operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right]$ 1 $Q, V \leftarrow SchurDecompose(A);$ 2 $U \leftarrow TriangSqrt(V);$ 3 $C \leftarrow QUQ^{\intercal};$

/* QVQT = A */ /* V = U² */ /* C = $\sqrt{\Sigma_{r}\Sigma_{f}}$ */

Input : Σ_r , Σ_f Output: $\operatorname{Tr}[C] = \operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right]$ 1 $Q, V \leftarrow SchurDecompose(A)$; 2 $U \leftarrow TriangSqrt(V)$; 3 $C \leftarrow QUQ^{\intercal}$; 4 return $\operatorname{Tr}[C]$;

/* $QVQ^{T} = A */$ /* $V = U^{2} */$ /* $C = \sqrt{\sum_{r} \sum_{f}} */$

Input : Σ_r , Σ_f Output: $\operatorname{Tr}[C] = \operatorname{Tr}\left[\sqrt{\Sigma_r \Sigma_f}\right]$ 1 $Q, V \leftarrow SchurDecompose(A)$; 2 $U \leftarrow TriangSqrt(V)$; 3 $C \leftarrow QUQ^{\intercal}$; 4 return $\operatorname{Tr}[C]$;

$$/* \ QVQ^{T} = A \ */$$
$$/* \ V = U^{2} \ */$$
$$/* \ C = \sqrt{\Sigma_{r}\Sigma_{f}} \ */$$

Line [1-3] each takes cubic time!

Idea 3: Don't compute $Tr\left[\sqrt{\Sigma_r \Sigma_f}\right]$, use *eigenvalues* instead.³

Mathiasen, A. and Hvilshøj, F., 2020. Fast Fréchet Inception Distance. arXiv preprint arXiv:2009.14075.

Lemma 1 Tr[\sqrt{A}] = $\sum_{i} |\sqrt{\lambda_i(A)}|$. ⁴

⁴There are some nuances here, please refer to paper for full details.

Lemma 1 Tr[\sqrt{A}] = $\sum_{i} |\sqrt{\lambda_i(A)}|$. ⁴

Lemma 2 Computing eigenvalues of $d \times d$ matrix A takes $\mathcal{O}(d^3)$ time. (similar time to compute \sqrt{A})

⁴There are some nuances here, please refer to paper for full details.

The non-zero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

The non-zero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

The non-zero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

The non-zero eigenvalues of AB are equal to those of BA, as long as the products are square. ⁵

⁵Nakatsukasa, Y., 2019. The low-rank eigenvalue problem. arXiv preprint arXiv:1905.11490.

High level idea: Construct "small" matric M such that $\lambda_i(M)$ satisfy $\sum_i |\sqrt{\lambda_i(M)}| = \text{Tr}[\sqrt{\Sigma_r \Sigma_f}]$. When M is sufficiently small, computing eigenvalues will be faster than computing $\sqrt{\Sigma_r \Sigma_f}$ explicitly.

Stack the *m* fake encoded samples into a $d \times m$ matrix X_{f} .

Stack the *m* fake encoded samples into a $d \times m$ matrix X_{f} .

$$\Sigma_f = C_f C_f^{\mathsf{T}}$$
 where $C_f = \frac{1}{\sqrt{m-1}} \left(X_f - \mu_r \mathbf{1}_m \right)$ (5)

Stack the *m* fake encoded samples into a $d \times m$ matrix X_{f} .

$$\boldsymbol{\Sigma}_{f} = C_{f}C_{f}^{\mathsf{T}} \quad \text{where } C_{f} = \frac{1}{\sqrt{m-1}} \left(X_{f} - \mu_{r} \mathbf{1}_{m} \right) \tag{5}$$

Then

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

Using Lemma 3:

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

Using Lemma 3:

Eigenvalue computations go from $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$ (Lemma 2).

$$\Sigma_r \Sigma_f = \Sigma_r C_f C_f^{\mathsf{T}} \tag{6}$$

Using Lemma 3:

Eigenvalue computations go from $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$ (Lemma 2). Finally due to Lemma 1:

$$\operatorname{Tr}\left[\sqrt{\Sigma_{r}\Sigma_{f}}\right] = \sum_{i=1}^{m-1} |\sqrt{\lambda_{i}(C_{f}^{\mathsf{T}}\Sigma_{r}C_{f})}|$$
(8)

Overall, we get runningtime

$$\operatorname{FID} = \underbrace{\|\mu_r - \mu_f\|_2^2}_{\mathcal{O}(d)} + \underbrace{\operatorname{Tr}[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2\sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}}\Sigma_r C_f)}}_{\mathcal{O}(d^2m + m^3)}| \quad (9)$$

What is it Good For? 🞜

$$\operatorname{FID} = \underbrace{\|\mu_r - \mu_f\|_2^2 + \operatorname{Tr}[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2\sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2m + m^3)}| \quad (9)$$

$$\operatorname{FID} = \underbrace{\|\mu_r - \mu_f\|_2^2 + \operatorname{Tr}[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2\sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2m + m^3)}| \quad (9)$$

During training, we typically have $n \gg d \gg m$

$$\operatorname{FID} = \underbrace{\|\mu_r - \mu_f\|_2^2 + \operatorname{Tr}[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2\sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2m + m^3)}| \quad (9)$$

During training, we typically have $n \gg d \gg m$

Example 4

For GANs on ImageNet, test size (*n*) is 10 000, encodings (*d*) are 2048, and batch size (*m*) is typically 128.

$$\operatorname{FID} = \underbrace{\|\mu_r - \mu_f\|_2^2 + \operatorname{Tr}[\Sigma_r + \Sigma_f]}_{\mathcal{O}(d)} - 2\sum_{i=1}^{m-1} |\underbrace{\sqrt{\lambda_i(C_f^{\mathsf{T}} \Sigma_r C_f)}}_{\mathcal{O}(d^2m + m^3)}| \quad (9)$$

During training, we typically have $n \gg d \gg m$

Example 4

For GANs on ImageNet, test size (*n*) is 10 000, encodings (*d*) are 2048, and batch size (*m*) is typically 128.

Set's use FID for optimizations!

GAN

What will happen if we just optimize for FID?

What will happen if we just optimize for FID?

What will happen if we just optimize for FID?

