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Metrics



First Idea: Inception Score '

Salimans, T,, Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. and Chen, X,,
2016. Improved techniques for training gans. arXiv preprint arXiv:1606.03498.
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Inception Score
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Inception Score

Correlates with human judgement but doesn't
take P,oq INto account!



Second Idea: Fréchet Inception Distance ?

Heusel, M., Ramsauer, H., Unterthiner, T, Nessler, B. and Hochreiter, S., 2017.
Gans trained by a two time-scale update rule converge to a local nash
equilibrium. arXiv preprint arXiv:1706.08500.
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Fréchet Inception Distance

Idea: Compare Inception network encodings between
Preal and Pfake-

Given means ur, us and covariances X, Xy of Inception
encodings, the Fréchet Inception Distance (FID) is defined as

FID(Xr, Xf) = W% (N{Mr, o h Mpg, zf}) (3)

= = gl + TH[Z] + Te[z] - 2Tel /T @)
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Today this is state-of-the-art.
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Computing Tr[,/X %]

Previous method explicitely computes /X ¥ and then
computes the trace:

Input : %, ¢

Output: Tr[C] = Tr [\/T %]
1 Q,V « SchurDecompose(A) : /* QVQT =A */
2 U+ TriangSqrt(V); Jx V=112 /
3 C+QuQT; /* C= /% */

4 return Tr[C];

Line [1-3] each takes cubic time!



Fast Fréchet Inception Distance




Idea 3: Don't compute Tr [/%,5;], use
eigenvalues instead.’

Mathiasen, A. and Hvilshgj, F, 2020. Fast Fréchet Inception Distance. arXiv
preprint arXiv:200914075.
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Lemmas

Lemma 1
Tr[VA] = 32 [VAi(A)]
Lemma 2

Computing eigenvalues of d x d matrix A takes O(d?) time.
(similar time to compute \/A)

“There are some nuances here, please refer to paper for full details.
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Fréchet Inception Distance

High level idea: Construct “small” matric M such that

Ai(M) satisfy > |\ Ai(M)] = Tr[\/2xf. When M is

sufficiently small, computing eigenvalues will be faster
than computing /¥, X explicitly.

i
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1
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Fréchet Inception Distance

Using Lemma 3:
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Using Lemma 3:
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f f

dxd mxm

Figenvalue computations go from O(d?) to O(m3) (Lemma 2).
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Fréchet Inception Distance

Using Lemma 3:
N(ZCHCT) = M(TE,Cr) (7)
~—— N——
dxd mxm

Figenvalue computations go from O(d?) to O(m3) (Lemma 2).
Finally due to Lemma 1:

[./zzf_Zy (=) (8)
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Fréchet Inception Distance

Overall, we get runningtime

m—1
FID = |l — ll3 + Te[Er + 502 3 [ /MCEC) | (9)
=1 N —
O(d?’m+m?3)
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The Greater Perspective

O(dZm+m3)

During training, we typically have n > d > m

Example 4
For GANs on ImageNet, test size (n) is 10 000, encodings (d) are

2048, and batch size (m) is typically 128.

Let's use FID for optimizations!
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Performance
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Minimizing FID
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Minimizing FID

(a) ImageNet 128x128
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